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Tt is shown that, for a Riemannian space V; of dimension d, solutions of the
equation 8((—g)''2R")/3g?® = 0 for n = (1/4)(d + 2) may be interpreted
as (d + 1)-dimensional Einstein spaces.

1. INTRODUCTION

If R, R,, are the curvature scalar and Ricci tensor, respectively, of a d-
dimensional Riemannian space V,; (d > 2) with metric g,,, the functional
derivative 8((—g)"2R™)/8g% is given by?

Rn—l(nRab - %‘Rgab) - ngabD(Rn—l) + n(Rn—l);ab = O

In the following, R # 0 is assumed. We consider the equations 8((—g)*2R")/
8g%" = 0 which may be rewritten in the form

1 - 2n
- -1 — — -2 el —
Ry +(m— DR R + (n — 1)(m — 2)R™ 2R R, + S = 1) Rg,, =0
(1a)
d— 2n -
R R+ (2 —-nR R R (1b)

T 2n(n = D1 = d)

For n = 2, in four-dimensional space, equations (la, b) occasionally have
been considered as candidates for replacing Einstein’s field equations in
gravitational theory.
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2 Latin indices a, b, ¢ run from 1 to d, while Greek indices range from 0 to 4. If not
otherwise indicated, indices are raised by g.,. The semicolon denotes the covariant
derivative with regard to gav; CIR = g°°R..s. A double stroke denotes the covariant
derivative with regard to the metric Z., of V1.
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The purpose of this note is twofold. First, a recent result of Buchdahl
(1978) will be generalized. Then, it is shown that, for a certain value of n,
solutions of the field equations (la, b) may be interpreted as (d + 1)-dimen-
sional static Finstein spaces.

2. LINEARIZATION OF FIELD EQUATIONS

In a (d + 1)-dimensional Riemannian space V,., the static metric is
now considered

ds? = R™29(dx")? + R%Pg,.(x°) dx® dx? (2)

with p, g real and R = R(x°) the curvature scalar of V. Let R = g*R,; and
R, ; be the curvature scalar and Ricei tensor of V., ; with the metric (2). From
the general formulas given in Buchdal (1954)

Roo = R7*®*{—gR™'JR + R™*R R ¢l + g — p(d — 2)]} (3a)
Ry =0 (3b)
Ry = Ry + [(d — 2p — q]R*Rq,
+ [9(g + 1) + 2pg — p(p + 1)(d — 2)]R™*R,R;,
+ g{pPR7OR + plpd — 2) — q — 1]R72 R} (30)
R=R 2R+ 2R '[ORW@p —p —q) + R2R.R°
x [—dp +29(qg + 1) + (d — 2)(dp* — 2pg — p — p»)]} (3d)
By use of equations (3a—d) one can show that equations (la, b) and
Ruy + kZsR = 0 4
are in accord if k, n, and p are chosen properly. In fact, (4) is equivalent to
R+ [(d—2p —qIR'R.op + [q(qg + 1) — p(p + 1)(d — 2) + 2pg]R"*R..R,,
+ N7Y[p + k(pd — Plgut —R + p(d — D[p(d — 2) — 2q]R"?R; R} = 0

&)
where
N=g+2(1 + kd)(pd — p — q)
Comparison of equations (1a) and (5) leads to
n=gq+1, p=2qd-2)"1 (6a)
k =3ld -2 - 2dglld®q — (1 + ¢)(d — D]™* (6b)

The contracted Bianchi identities, in V4,1, R%,, = O after integration lead
to the following expression of R as a function of R:

R =q(d — 2?MRS @)
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where
S=[d—-2— 4qld — 2)"1
M= d(d — 2k + 1) + g(d — 2)* — 2qd(kd + 2k + 2)

For d = 4, n = 2, i.e., a quadratic Lagrangian in a four-dimensional space,
the result of Buchdahl (1978) is recovered.

3. (d + 1)-DIMENSIONAL EINSTEIN SPACES

By a straightforward calculation using equations (3a, d) one concludes
that

Roo + kZooR =0 8)
is consistent with (the trace of) equation (4) if and only if
k=—-(1+d) ®
Equations (6b) and (9) then lead to
q=3d-2) (10a)
If this value of ¢ is substituted in (6a), » and p take the values
n=3d+2, p=1% (10b)
In this case, the metric g,; becomes
ds? = R*¥2(dx%)? + Rg,,(x°) dx® dx? 2"

and V., is an Einstein space. If (9) and (10a) hold, from (7) R = const.
follows as required. It is not difficult to see that g,, cannot be the metric of
an Einstein space ¥V, too.
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